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In our work we have analyzed different stratified rockwool samples, with
considerable differences regarding density, mean pore diameter, and porosity, by
means of a new method for the measurement of the dynamic flow resistance based
on the electrical analogy. This method enables us to measure this parameter
without the need for placing the sample between two microphones. Our
experimental results have been compared to those obtained with a different
measurement scheme and, from a theoretical point of view, we have examined the
extent to which the capillary pore approximation can be utilized in intermediate
flow regimes and Poiseuille flow regimes and in real situations. For this purpose,
a static flow resistivity, which was also approximated using an acoustic method
and a commonly accepted theoretical approximation, was calculated based on a
microscopic study of the samples and the fibre’s diameter. Regarding the
conclusions obtained, the results show that the new experimental procedure for
determining the dynamic flow resistance is of interest in the intermediate and
Poiseuille flow regimes in which, within the limitation of our experimental set-up,
good results were obtained. The acoustic procedure for measuring a static flow
resistivity delivered good results only for a regime close to Poiseuille, which was
obtained only with higher density samples.
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1. INTRODUCTION

Many of the acoustic properties of fibrous materials can be modelled and predicted
with the aid of appropriate empirical formulae [1–3]. Among the input parameters
that are required by such type of macroscopic models, the flow resistivity s0 [4]
(which other authors call specific flow resistance [5], or flow resistance per unit
thickness of the sample), is a very old and well established quantity and frequent
reference is made to its use in the literature [6–9]. As usually this parameter is
measured in steady Poiseuille flow conditions, i.e., at comparatively low flow
speeds [4, 7], one major concern with respect to such a parameter is the question
of its possible frequency dependence. For instance, Kawasima [10], in his
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theoretical model, did not find any remarkable flow resistance versus frequency
dependence except at the sample characteristic frequencies. It is considered in
practice that in highly porous materials the static value s0 is accurate enough for
modelling in any acoustic regime, [1, 7, 9].

In the case of fibrous materials, however, Attenborough [11] realized that the
fibre orientation, its microscopic structure and its stratification properties can
severely affect acoustic behaviour. Moreover, it was observed by Lambert and
Tesar [8] that non-negligible flow resistance versus frequency variations can arise
in stratified fibrous materials like Kevlar. To account for this dependence authors
like Morse and Ingard [12] proposed a dynamic flow resistance parameter. In this
context, various authors like Zwicker and Kosten [6], Biot [13] and Lambert and
Tesar [8] used a cylindrical pore approximation for fibrous material to quantify
the dynamic flow resistance per unit thickness, s, as a function of the acoustic
Reynolds number k= r(vr0/m)1/2. Here r is the equivalent pore radius, m is the air
viscosity, r0 is the air density and v is the angular frequency of excitation.

The analysis due to Zwicker and Kosten indicates that s=(k/h)(8m/r2) if the
flow regime is Poiseuille type (k�1), s= k/(hr)z2mvr0 in the Helmholtz flow
regime (k�1), where k is the structure factor and h is the porosity. In transient
regime (10q kq 1), of interest in many practical situations [8], estimation of s

is more involved and there is a lack of theoretical and empirical information. In
connection with this shortcoming, comparatively recent work has been devoted to
the experimental analysis of the dynamic flow resistance per unit thickness by
means of acoustic methods. First to mention is the work of Mingzhang and
Jacobsen [14], the results of which (referred to a single sample) show a clear
tendency towards lower values of s for increasing k. This behaviour is in apparent
contradiction with the Re [F(k)] function of Lambert and Tesar [8] which predicts
a slightly increasing tendency. This function equals s/s0, upon taking into account
that F(k)= 1

3[zj tanh (zjk)]/[1− (1/kj) tanh (zjk)] is Biot’s function [13], which
is a complex quantity and represents the deviation from Poiseuille friction as k

increases.
A second proposal related to this issue is the work due to Woodcock and

Hodgson [15] who define a (mathematical) frequency dependent function from the
inversion of the Delany and Bazley [1] expression of the characteristic impedance
versus flow resistivity relation. According to these authors [15], the function so
calculated has an average value which is close to the flow resistivity; thus, the
question is legitimate whether their mathematical averaged value is a true measure
of the flow resistivity of the sample obtained according to other known procedures,
like the method by Bies and Hansen [4].

In this work a new method of measuring the dynamic flow resistance of
rockwool samples in a wave tube is presented and examined. These samples have
considerable differences regarding density, mean pore diameter, rigidity and
porosity. In order to confirm the tendency observed by Mingzhang and Jacobsen,
the non-dimensionalized dynamic flow resistance s/s0 was compared to the
Lambert and Tesar Re [F(k)] function in all cases. Our measurements confirm a
tendency which is close to the Lambert and Tesar prediction but different from
the results of Mingzhang and Jacobsen. Also the averaged values proposed by
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Woodcock and Hodgson are compared to the flow resistivity of Bies and Hansen
based on our new experimental results.

2. THEORETICAL FORMULATION

2.1.        

The dynamic flow impedance is defined for a very thin sample [14, 16] as

Z� f =Dp̆/v̆, (1)

where Dp̆ is the (complex) acoustic pressure difference through the sample and v̆
is the complex flow velocity throughout the sample. It is implied in this definition
that the sample is supposed to be so thin compared to the wavelength that the
flow velocity can be regarded as constant throughout the sample (i.e., if
l1 15 mm, thicknesses of the sample in the range of 2–4 mm can be chosen). This
parameter has been measured by Mingzhang and Jacobsen [14], by means of an
extension of the Ingard and Dear method [16].

The method proposed to measure Z� f is based on the electrical analogy.
The specific acoustic impedance measured for a sample ‘‘1’’ Z� 1, with material

of characteristic impedance Z� C and thickness l backed by a second sample ‘‘2’’ of
specific acoustic impedance Z� 2, and subject to a plane-wave incidence normal to
the wall, is, according to Zwikker and Kosten [6] and Beranek [5]

Z� 1 =Z� C coth (ğl+c� ), (2)

where ğ is the propagation constant and c� =coth−1 (Z� 2/Z� C ). In samples of very
low thickness, the surface impedance will be almost independent of sample
thickness and can be considered as a concentrated or localized quantity. Following
this idea, in our method we have measured the impedance of small 1–4 mm
thickness samples backed with air and an acoustic tube terminated with an
absorbing wedge which ensures fairly free field propagation of the transmitted
wave [14]. At ideal conditions, it would be allowable to replace Z� 2 by the
characteristic air impedance r0c0. However, in our experimental set-up this is not
possible and Z� 2 is the acoustic impedance of the tube that is measured without
the test sample but with the same absorbing termination. In this approximation
the sample flow impedance can be deduced therefore from the measured values
as

Z� 12 =Z� 1 −Z� 2 = (p̆1/v̆1)− (p̆2/v̆2). (3)

Hence, if the sample thickness is very small, v̆1 = v̆2 and Z� 12 =Z� f =Dp̆/v̆, of which
the real part gives the dynamic flow resistance. The dynamic flow resistance per
unit thickness is s=Re [Z� f ]/l, where l is the thickness of the sample.

2.2.      

The flow resistivity is [9]

s0 =Dp/vl, (4)
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where Dp is the static pressure drop through the sample divided by its thickness
l and v is the flow velocity across it. It is often characterized by means of
non-acoustic methods by using the expression of Bies and Hansen [4],

s0 =3·18×10−9 × r1·53
m /d2, (5)

in which rm is the mean sample density and d is the mean diameter of its fibres,
expressed in I.S. units. The flow resistivity s0 is also referred too by other authors
as static flow resistance per unit thickness [5]. In any case, it is always measured
in static Poiseuille flow conditions with flow velocities in the range 5×10−4 to
5×10−2 [4] and 3×10−3 m/s [7].

Woodcock and Hodgson [15] point out the possibility of approximating this
quantity with acoustic techniques. The (complex) characteristic impedance
Z� C =ZRe + jZIm is then given as a function of the flow resistivity s0, according
to the expression by Delany and Bazley [1], where its real part is

ZRe = r0c0[1+0·051(s0/f )0·75], (6)

r0c0 being the characteristic impedance of air and f the frequency. This suggests,
as was noticed in reference [15], that a mathematical flow resistivity sm can be
related to some measured impedance values by inversion of equation (6),

sm =[(ZRe − r0c0)/0·051r0c0f−0·75]1/0·75, (7)

where an apparent dependence on frequency can be observed. The measurement
of ZRe is performed by determining the surface impedance of two samples, ‘‘1T’’
and ‘‘2T’’, of thicknesses l and 2l, respectively, both backed with a rigid wall,
which is related to the material characteristic impedance [17] by

Z� C =[Z� 1T (2Z� 2T −Z� 1T )]1/2. (8)

The real part of the foregoing expression is then substituted into equation (7) to
give a mathematical function sm , whose average value should approximate the
flow resistivity: s̄m 1 s0.

3. EXPERIMENTAL RESULTS

Our experimental method proceeds in two steps. The first step consists of
determining the dynamic flow impedance of very thin samples. From these data
the dynamic flow resistance per unit length, s, is calculated from Re [Z� f ]/l. Second,
an effective static flow resistivity is obtained from the measurement of the
characteristic impedance of the sample. The measurement of the characteristic
impedance follows the outlines of the method proposed by Smith and Parrot [17].
From there, following Woodcock and Hodgson [15], a value of the flow resistivity
at any frequency, sm , of which the arithmetic mean, s̄m , determines the effective
static flow resistivity of the sample, is calculated. This value can be compared to
the Bies and Hansen equation (5) estimation, if the mean fibre diameter is
previously calculated. A comparison of both values can be found in Table 1.

The measured dynamic flow resistance per unit length, s, and the values
obtained for s0 in Table 1 can finally be related to each other in the form of the
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Figure 1. (a) Photo of a sample of rockwool (100×); (b) electronic microscope photo.
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Figure 2. Experimental arrangement for the measurement of the flow resistance of a fibrous
sample.

ratio s/s0, which itself is related to the Lambert and Tesar function
s/s0 =Re [F(k)].

The fibre mean diameter of available samples was first measured by performing
a statistical study on 100 Nikkon Microphot pictures; see Figure 1(a). Additional
confirmation measurements were done with the aid of an electronic microscope,
as exemplified in Figure 1(b). Following Nichols [18], the shots are considered not

Figure 3. Comparison of measurements of dynamic flow resistance per unit thickness, normalized
to rc units. ——, Measurements of samples of 3 and 4 mm thickness; –––, measurements of a sample
of 7 mm thickness.
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Figure 4. Measurement of dynamic flow resistance per unit thickness s on a stratified rockwool
sample of (a) 30 kg/m3, (b) 70 kg/m3, (c) 120 kg/m3 and (d) 175 kg/m3.

to significantly affect the static flow resistivity, s0, and therefore the value obtained
for the effective mean fibre diameter, of about 8 mm, is in full accordance with
values obtained by Voronina [19] on similar rockwool samples.

The samples for measuring the characteristic impedance were cut with the aid
of a device, as used by Chung and Blaser [20], adapted to our tube diameter. Thin
samples for measuring the dynamic flow resistance, as described in section 2.1,
were cut with a special knife delivered by the manufacturer.

The sample was attached (see Figure 2) to the junction between two tube
segments upstream and downstream to avoid displacement during measurements
[21]. The 57-mm diameter tube and measurement equipment was set up following
ASTM E 1050 norm [22], with a cut-off frequency, up to which the plane wave
approximation can be applied, of 3500 Hz.

Table 1 shows characteristic parameters of the rockwool samples tested. It can
be observed that, in the frequency range considered, neither Poiseuille nor
Helmholtz flow conditions are to be expected. A strong discordance can be
observed between the static flow resistivity of Bies (equation (5)), calculated with
a fibre diameter of 8 mm, and the values obtained following the method of
Woodcock and Hodgson.

In Figure 3, results of measurements on samples of the same density but different
thicknesses are shown. It may be observed, that when the thickness is in the range
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of the values allowed by the method (as outlined in section 2.1), results obtained
are in full accordance, whereas if thickness cannot be considered small, results
differ substantially.

Figures 4(a, b) show the dynamic flow resistance per unit thickness value, s, as
a function of frequency for samples of density 30, 70 kg/m3, respectively. In
Figures 5(a, b), the quotient s/s0 for the same samples is represented and
compared to the Lambert’s theoretical prediction. It can be seen that 10q kq 1
in all cases, consequently measurements correspond to intermediate flow regimes.
In both samples the prediction of Lambert and Tesar, showing increasing

Figure 5. (a) Quotient s/s0 between the measured dynamic flow resistance per unit thickness and
the static flow resistivity as a function of frequency (——) on a stratified rockwool sample of
30 kg/m3, quotient s/s0 calculated from Lambert’s relation applied to a rockwool sample of a
30 kg/m3 (–––); (b) as (a) but for 70 k/m3 sample; (c) as (a) but 120 kg/m3 sample; (d) as (a) but
175 kg/m3 sample.
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resistance for increasing k, are in good accordance with the measured flow
resistance per unit thickness values.

Figures 4(c, d) and Figures 5(c, d), show the results for the samples of 120 and
175 kg/m3, respectively. In contrast to the former results of lower density samples,
now the flow regime is close to Poiseuille. The theoretical prediction of Lambert
and Tesar is close to the determined values when kQ 1 in Poiseuille’s flow regime.
While if kq 1, there is a significant tendency towards values higher than the
predicted ones, especially in Figure 5(c).

Measurements by Mingzhang and Jacobsen presented in Figure 2 of reference
[14], show similar values of flow resistance per unit length in Poiseuille’s regime,
as in our samples; however there is a clear difference in the tendency on increasing
k if kq 1.

4. CONCLUSIONS

From the available data, the following conclusions can be drawn.
The measurement procedure outlined in section 2.1 allows one to obtain values

for the dynamic flow resistance in a simple and fast way in Poiseuille and
intermediate flow regimes. The limitations of the method are similar to those
imposed by ‘‘the two microphone method’’, as well as the necessity of cutting thin
samples of fibrous materials with precision and without deteriorating them.

The value of flow resistivity s0 obtained by means of the Woodcock and
Hodgson procedure (see Table 1) is far from the value obtained with the Bies and
Hansen formula (equation (5)) except in the sample of highest density. Only in this
last sample were measurements almost fully in agreement with the Poiseuille
regime, which could explain this fact (see the last column in Table 1).

The observed tendency of increasing dynamic flow resistance per unit thickness
with increasing acoustic Reynolds number is in agreement with the former results
of Biot [13], Lambert and Tesar [8] as well as Ingard and Dear [16]. Moreover,
our measured s/s0 values are in good accordance with the theoretical predictions
by means of Lambert’s Re [F(k)] function in Poiseuille as well as in intermediate
flow regimes. This differs from the results obtained by Mingzhang and Jacobsen
in Figure 2 of reference [14], who observed a negative slope at higher frequencies;
we believe this difference could be due to the frame of the samples, as indicated
by Attenborough [11]. In our work we used only stratified rockwool samples.
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